1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
//! Program x86 segmentation hardware.

use core::fmt;

/// Specifies which element to load into a segment from
/// descriptor tables (i.e., is a index to LDT or GDT table
/// with some additional flags).
bitflags! {
    flags SegmentSelector: u16 {
        /// Requestor Privilege Level
        const RPL_0 = 0b00,
        const RPL_1 = 0b01,
        const RPL_2 = 0b10,
        const RPL_3 = 0b11,

        /// Table Indicator (TI) 0 means GDT is used.
        const TI_GDT = 0 << 3,
        /// Table Indicator (TI) 1 means LDT is used.
        const TI_LDT = 1 << 3,
    }
}

impl SegmentSelector {
    /// Create a new SegmentSelector
    ///
    /// # Arguments
    ///  * `index` index in GDT or LDT array.
    ///
    pub fn new(index: u16) -> SegmentSelector {
        SegmentSelector { bits: index << 3 }
    }

    pub fn from_raw(bits: u16) -> SegmentSelector {
        SegmentSelector { bits: bits }
    }
}

impl fmt::Debug for SegmentSelector {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let r0 = match self.contains(RPL_0) {
            false => "",
            true => "Ring 0 segment selector.",
        };
        let r1 = match self.contains(RPL_1) {
            false => "",
            true => "Ring 1 segment selector.",
        };
        let r2 = match self.contains(RPL_2) {
            false => "",
            true => "Ring 2 segment selector.",
        };
        let r3 = match self.contains(RPL_3) {
            false => "",
            true => "Ring 3 segment selector.",
        };
        let tbl = match self.contains(TI_LDT) {
            false => "GDT Table",
            true => "LDT Table",
        };

        write!(f,
               "Index {} in {}, {}{}{}{}",
               self.bits >> 3,
               tbl,
               r0,
               r1,
               r2,
               r3)
        // write!(f, "Index")
    }
}


/// Entry for GDT or LDT. Provides size and location of a segment.
bitflags! {
    flags SegmentDescriptor: u64 {
        /// Descriptor type (0 = system; 1 = code or data).
        const DESC_S    = 1 << (32+12),
        /// Descriptor privilege level 0.
        const DESC_DPL0 = 0b00 << (32+13),
        /// Descriptor privilege level 1.
        const DESC_DPL1 = 0b01 << (32+13),
        /// Descriptor privilege level 2.
        const DESC_DPL2 = 0b10 << (32+13),
        /// Descriptor privilege level 3.
        const DESC_DPL3 = 0b11 << (32+13),
        /// Descriptor is Present.
        const DESC_P = 1 << (32+15),
        /// Available for use by system software.
        const DESC_AVL  = 1 << (32+20),
        /// 64-bit code segment (IA-32e mode only).
        const DESC_L    = 1 << (32+21),
        /// Default operation size (0 = 16-bit segment, 1 = 32-bit segment)
        const DESC_DB   = 1 << (32+22),
        ///  Granularity.
        const DESC_G    = 1 << (32+23),

        // System-Segment and Gate-Descriptor Types for IA32e mode.
        // When the S (descriptor type) flag in a segment descriptor is clear,
        // the descriptor type is a system descriptor.

        const TYPE_SYS_LDT = 0b0010 << (32+8),
        const TYPE_SYS_TSS_AVAILABLE = 0b1001 << (32+8),
        const TYPE_SYS_TSS_BUSY = 0b1011 << (32+8),
        const TYPE_SYS_CALL_GATE = 0b1100 << (32+8),
        const TYPE_SYS_INTERRUPT_GATE = 0b1110 << (32+8),
        const TYPE_SYS_TRAP_GATE = 0b1111 << (32+8),

        // Code- and Data-Segment Descriptor Types.
        // When the S (descriptor type) flag in a segment descriptor is set,
        // the descriptor is for either a code or a data segment.

        /// Data Read-Only
        const TYPE_D_RO = 0b0000 << (32+8),
        /// Data Read-Only, accessed
        const TYPE_D_ROA = 0b0001 << (32+8),
        /// Data Read/Write
        const TYPE_D_RW = 0b0010 << (32+8),
        /// Data Read/Write, accessed
        const TYPE_D_RWA = 0b0011 << (32+8),
        /// Data Read-Only, expand-down
        const TYPE_D_ROEXD = 0b0100 << (32+8),
        /// Data Read-Only, expand-down, accessed
        const TYPE_D_ROEXDA = 0b0101 << (32+8),
        /// Data Read/Write, expand-down
        const TYPE_D_RWEXD = 0b0110 << (32+8),
        /// Data Read/Write, expand-down, accessed
        const TYPE_D_RWEXDA = 0b0111 << (32+8),

        /// Code Execute-Only
        const TYPE_C_EO = 0b1000 << (32+8),
        /// Code Execute-Only, accessed
        const TYPE_C_EOA = 0b1001 << (32+8),
        /// Code Execute/Read
        const TYPE_C_ER = 0b1010 << (32+8),
        /// Code Execute/Read, accessed
        const TYPE_C_ERA = 0b1011 << (32+8),
        /// Code Execute-Only, conforming
        const TYPE_C_EOC = 0b1100 << (32+8),
        /// Code Execute-Only, conforming, accessed
        const TYPE_C_EOCA = 0b1101 << (32+8),
        /// Code Execute/Read, conforming
        const TYPE_C_ERC = 0b1110 << (32+8),
        /// Code Execute/Read, conforming, accessed
        const TYPE_C_ERCA = 0b1111 << (32+8),
    }
}

/// This is data-structure is a ugly mess thing so we provide some
/// convenience function to program it.
impl SegmentDescriptor {
    pub fn new(base: u32, limit: u32) -> SegmentDescriptor {
        let base_low: u64 = base as u64 & 0xffffff;
        let base_high: u64 = (base as u64 >> 24) & 0xff;

        let limit_low: u64 = limit as u64 & 0xffff;
        let limit_high: u64 = (limit as u64 & (0b1111 << 16)) >> 16;

        SegmentDescriptor {
            bits: limit_low | base_low << 16 | limit_high << (32 + 16) | base_high << (32 + 24),
        }
    }
}

impl fmt::Debug for SegmentDescriptor {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "SD: 0x{:x}", self.bits)
    }
}

/// Reload stack segment register.
pub unsafe fn load_ss(sel: SegmentSelector) {
    asm!("movw $0, %ss " :: "r" (sel) : "memory");
}

/// Reload data segment register.
pub unsafe fn load_ds(sel: SegmentSelector) {
    asm!("movw $0, %ds " :: "r" (sel) : "memory");
}

/// Reload fs segment register.
pub unsafe fn load_es(sel: SegmentSelector) {
    asm!("movw $0, %es " :: "r" (sel) : "memory");
}

/// Reload fs segment register.
pub unsafe fn load_fs(sel: SegmentSelector) {
    asm!("movw $0, %fs " :: "r" (sel) : "memory");
}

/// Reload gs segment register.
pub unsafe fn load_gs(sel: SegmentSelector) {
    asm!("movw $0, %gs " :: "r" (sel) : "memory");
}

/// Reload code segment register.
/// Note this is special since we can not directly move
/// to %cs. Instead we push the new segment selector
/// and return value on the stack and use lretq
/// to reload cs and continue at 1:.
pub unsafe fn load_cs(sel: SegmentSelector) {
    asm!("pushq $0
         lea 1f(%rip), %rax
         pushq %rax
         lretq
         1:" :: "r" (sel.bits() as u64) : "rax" "memory");
}